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Abstract

The effective diffusivity in grain boundary networks of polycrystalline materials is evaluated
using a kinetic Monte Carlo model. This model connects the atomic hopping processes with the
coarse-grained diffusion so that the macroscopic simulations can be conducted without the need
to resolve atomic details. The effects of various properties of the grain boundary network on the
effective diffusivity have been examined, including grain size, two- vs. three-dimensional networks,
and distribution of grain boundary diffusivities. It is shown that the effective diffusivity does not
depend on the grain size when grain boundary diffusion is the dominant diffusion mechanism in
a polycrystalline sample. We find that the behavior of the effective diffusivity is qualitatively the
same for two- and three-dimensional models, except that the percolation threshold and the criti-
cal exponents need to be changed accordingly when using empirical functions to characterize the
effective diffusivity. In addition, we find that the effective diffusivity exhibits large fluctuations
due to its dependence on the grain boundary distributions, and therefore the details of the mate-
rials microstructure can significantly impact the effective diffusivity in a specific finite-size sample.
Finally, we check the applicable range of the effective medium theory and discuss the effects of
modeling different grain boundary types with varying diffusivities using just two vs. many types.
The grain boundary diffusion program (GBDiff) developed in this study is available under open
source licensing as part of the MAterials Simulation Toolkit (MAST) and can be obtained from
https://pypi.python.org/pypi/MAST/1.1.0.
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1. Introduction

Grain boundary (GB) diffusion plays an important role in various processes occurring in poly-
crystalline materials such as grain growth, sintering, recrystallization, Coble creep and diffusion-
induced GB migration [1, 2]. Since GBs generally provide high diffusivity paths and GB diffusion
is one of the dominant transport mechanisms in materials, understanding the mechanism of GB
diffusion and its dependence on GB structure is of significant interest. The first macroscopic GB
diffusion model was developed by Fisher [3]. This model treats a single GB as a highly diffusive
thin slab embedded in a semi-infinite body in such a way that the longer dimension of the slab
is perpendicular to the surface where diffusion source exists. Solving this model under the fixed
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concentration boundary condition provides the diffusant’s concentration profile along the GB, from
which the GB diffusivity can be then determined. The penetration profile of diffusant can also be
used to characterize the diffusion kinetics. One of the most widely used classification of diffusion
kinetics is Harrison’s classification, which introduces three regimes called type A, B and C [1, 4]. In
type A regime, the bulk diffusion length is larger than the spacing between GBs. In type B regime,
the bulk diffusion length is smaller than the GB spacing and GBs can be regarded as isolated. In
type C regime, the bulk diffusion length is smaller than the GB width so that diffusion can be
considered as taking place primarily within GBs with negligible sidewise leakage into the bulk [1].
Later on, Fisher’s model was extended to account for different types of boundary conditions (e.g.,
constant or instantaneous source) and different GB configurations (e.g., single or parallel GBs in a
semi-infinite or a finite domain) [5–11]. These models provided many insights into the GB diffusion
processes along an isolated GB or along multiple GBs with the same diffusivity in an idealized
geometry. Nevertheless, application of these models to GB networks with complex connectivity
and GB-dependent diffusivities is not straightforward.

In real materials, GB diffusion is sensitive to the GB atomic structure. The structure dependence
of GB diffusion was first measured by Turnbull and Hoffman [12, 13], where it was shown that the
diffusion along the [001] tilt GBs in Ag is anisotropic and it depends on the misorientation between
two grains. Since then, the misorientation dependence of GB diffusion has been found in many
other systems. It is generally found that the diffusivity along high angle GBs is higher than
along low angle or coincidence site lattice (CSL) GBs [14–17]. The structure dependence of GB
diffusion arises from the atomic nature of diffusion. Specifically, GB diffusion generally depends
on formation energies and migration energies of point defects and these properties strongly depend
on the specific arrangements of atoms in the GB [18]. Because of this structure dependence,
the diffusivities in individual GBs may vary by several orders of magnitude under typical testing
conditions, which makes it challenging to describe the macroscopic diffusivity when mediated by
GB diffusion in polycrystalline samples. In such cases, the effective diffusivity is one of the most
important quantities used to characterize the macroscopic GB diffusion. The effective diffusivity
is defined in such a way that the macroscopic diffusion through a heterogeneous GB network
(where individual GBs have a wide range of diffusivities) is equivalent to the diffusion through a
homogeneous system with a single value of the effective diffusivity. As the effective diffusivity is
often correlated with various physical properties of structural materials related to GB diffusion,
such as intergranular fracture, corrosion, and cavitation [19–23], understanding the dependence of
the effective diffusivity on the details of the GB network is critical for design of materials with
desirable properties.

One should note that the effective diffusivity through polycrystalline materials is a complex func-
tion of different properties of the GB network such as the GB distribution and the GB connectivity.
Early investigations on the effective diffusivity were focused on developments of phenomenological
diffusion models in the Harrison type-A kinetics regime [1, 24–30]. These models account for the
bulk diffusion and GB diffusion in different grain patterns (e.g., square grains with the same size
surrounded by GB region uniformly distributed in the domain), but they generally consider only
one GB type and simplified GB geometries, and therefore ignore the influence of GB variety and
varied GB connectivity on the effective diffusivity. Here, we focus on the effective diffusivity in Har-
rison’s type C kinetic regime where GB diffusion is much faster than bulk diffusion. One material
science problem relevant to this regime may be the diffusion of Ag through polycrystalline silicon
carbide (SiC) [31, 32], where it has been suggested that the diffusivity of Ag in SiC GBs is several
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orders of magnitude larger than that in SiC bulk over a wide-range of temperature. In the type C
kinetic regime, one can assume that the diffusion occurs along GBs only and that the properties
of the GB network play a key role in determining the effective diffusivity. Recently, Chen and
Schuh [33] provided new insights into the effective diffusivity in a two-dimensional (2D) honeycomb
GB network. The authors investigated the role of a diffusivity contrast, defined as the ratio of the
diffusivities along high-diffusivity and low-diffusivity GBs. The GB networks were categorized into
high-contrast systems and low-contrast systems, where the diffusivity contrast is larger and smaller
than 104, respectively. It was shown that in high-contrast systems, the effective diffusivity is gov-
erned by the development of a percolating path of high-diffusivity GBs. In low-contrast systems,
the effective diffusivity is less sensitive to the topology of the GB network and it can be described
using composite averaging schemes.

The aim of our paper is twofold. First, we develop a kinetic Monte Carlo (kMC) model to
calculate the effective diffusivity in static heterogeneous GB networks. This model is applicable for
the case of impurity diffusion when the impurity has a strong tendency to segregate to GBs. In
contrast to earlier kMC models that obtained the diffusivity in a single GB based on the jump rates
of point defects [34–37], our model focuses on the long-range diffusion along GBs and determines
the effective diffusivity by taking individual GB diffusivities as an input. Our model provides
a connection between the coarse-grained motion of the diffusant and the atomic level processes
underlying diffusion. This connection is validated numerically and it allows us to ignore the atomic
details of GB diffusion in kMC simulations. Second, we extend the work of Chen and Schuh [33]
to further account for the dependence of the effective diffusivity on various properties of the GB
network. Instead of using a 2D honeycomb lattice, we use a three-dimensional (3D) Voronoi diagram
to represent the GB network with non-uniform distributions of grain sizes and GB areas. Two or
more types of GBs are assumed to be randomly distributed in the simulation domain. In a system
with two types of GBs, we demonstrate the dependence of the effective diffusivity on diffusivity
contrast, fraction of each GB type, GB distribution, and the average grain size. We also use our
numerical models to test the validity of two ways of modeling the effective diffusivity, namely
the effective medium theory (EMT) and the percolation theory. Finally, we discuss the effects of
considering more than two types of GBs on the effective diffusivity.

2. Kinetic Monte Carlo model

In order to capture GB diffusion in 3D GB networks, we mesh each GB plane using the soft-
ware Neper [38], which applies a widely-utilized bottom-up approach to generate mesh in Voronoi
tessellation vertices, edges (GB junctions) and faces (GBs), successively. A typical 3D GB network
with mesh in each GB is shown in Fig. 1a. For the sake of computational efficiency, our kMC
model does not resolve the atomic hopping processes. Instead, a diffusing particle is assumed to
perform a coarse-grained hop, i.e., it moves from one mesh node to another along an element edge
instantaneously in each kMC step. Therefore the current model captures the motion of a particle
on diffusive time scales and microscopic length scales, which is different from classic atomistic mod-
els where hops occur on the atomic scale. With the assumption of coarse-grained hop, the kMC
calculation of the effective diffusivity can be carried out as follows.

A Voronoi diagram [38] with a specified number of grains is first generated in a 3D cubic domain
to represent the GB network. In the Voronoi construction, grain centers are randomly distributed.
Then each GB plane is meshed by triangular elements. Each GB is then randomly assigned to
be one of two or more types, where each type has a different diffusivity. The diffusivity in a GB
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junction is assumed to be the same as the highest diffusivity in all GBs that connect to that GB
junction. Then the diffusivity along each triangular element edge is set to be the diffusivity in
the GB plane or GB junction it belongs to. Initially, a particle is located at a randomly selected
mesh node, and it is allowed to diffuse in the domain via hops along element edges (i.e., from
one mesh node to another). Periodic boundary conditions are applied in all spatial directions. In
each kMC step, the particle chooses to move along a given element edge i randomly based on the
rate Γi = Di

l2i
, where Di and li are the diffusivity and the length of element edge i, respectively.

After each step, the total diffusion time τ and the total displacement d (displacement between
particle’s initial position and its current position) are recorded. After a sufficiently long time (long

enough to obtain converged results), the effective diffusivity can be calculated as Deff = d2

6τ . This
procedure is repeated for 5×104 polycrystalline samples, and the reported effective diffusivities are
the average values. We also develop a model to calculate the effective diffusivity on a 2D Voronoi
GB network. The simulation method in 2D GB networks is similar to that in 3D GB networks.
The main difference is that in 2D, each Voronoi tessellation edge represents a GB so that no mesh is
needed and a particle hops between tessellation vertices. In addition, in 2D the effective diffusivity
is calculated by Deff = d2

4τ .
We note that our model relies on the assumption that a diffusing particle performs a coarse-

grained hop (it moves from one mesh node to another) instead of atomic-level hops between nodes.
However, we propose that this coarse-grained hopping yields almost the same effective diffusivity
as an atomically resolved hopping simulation, since the rates of hopping between mesh nodes are
chosen to give the correct average time to move such a distance. In order to validate this proposition
and to connect the coarse-grained hop and atomic-level hops, we perform kMC simulations in a 2D
rectangular domain with a square mesh. In this case, the entire 2D simulation domain corresponds
to a 3D element edge, where the domain size L in the horizontal direction is the edge length, and
the mesh size h is the atomic hopping distance. In simulations, two parallel surfaces perpendicular
to the horizontal direction, i.e., left and right surfaces, are free surfaces, and periodic boundary
conditions are applied along other directions that are perpendicular to the horizontal direction
so that the size of the simulation domain along these directions is irrelevant to the results. In
each simulation, a particle is initially placed at the left boundary, and it is allowed to diffuse by
hopping from one lattice point to another. The particle can move in four directions at all lattice
points except at the left boundary where it can move only in three directions (up, down, right).
The probability of choosing a given hopping direction is proportional to the hopping rate in that
direction, and the hopping rate is given by Γ0 = D0

h2
, where D0 is the atomic diffusion coefficient.

Using this hopping rate, we measure the time τ one particle requires to move from the left to the
right boundary, and then determine the diffusivity for the coarse-grained hop in this domain using
the Einstein’s equation D = L2

2τ .
We calculate the diffusivity D for different values of parameters L, h and D0, and we find that

in all cases, D for the coarse-grained hop is equal to the diffusion coefficient D0 for the atomic
hopping, that is, D = L2

2τ = D0 within numerical error of the simulation. We confirmed the validity
of this equality in a 3D domain with a cubic mesh. In 3D, we also consider the diffusion between
two parallel free surfaces perpendicular to the horizontal direction, and apply periodic boundary
conditions to all other surfaces. These results also demonstrate that D = D0 within the numerical
error regardless of the domain size, the hopping distance and the dimensionality of the simulation
domain. This relationship connects the atomic diffusion coefficient D0 with the diffusivity D of
the coarse-grained hop, where the particle moves from one mesh node to another. It implies that
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the macroscopic diffusion in a GB network can be captured by coarse-grained hops of a particle
without resolving the details of atomic hopping processes.

There are several significant additional assumptions of the model that should be mentioned
here. First, the only diffusion mechanism allowed in our model is the GB diffusion. As mentioned
before, most previous models for the effective diffusivity combines GB diffusion with other diffu-
sion mechanisms (e.g., bulk or dislocation pipe diffusion) [1, 24–30]. Our simulations are focused
on long-range diffusion processes in a macroscopic domain where the GB diffusion is the dominant
mechanism. The second assumption is that GBs with different characters are randomly distributed.
It is known that GB types in experimental samples are correlated and subject to crystallographic
constraints [39–41]. However, the only effect of GB correlation is a few percent shift in the per-
colation threshold, while the critical exponents in the percolation theory are not affected by the
correlation [33]. Because of that, we ignore the GB correlation in this work. The reader should
keep in mind that the percolation threshold in actual GB networks may be slightly different from
the one predicted by our model. If needed, correlations in GB types can be added to our model
framework relatively easily in future work. Finally, in our model the diffusion coefficient at the GB
junction and the GB are taken as identical. While the diffusion along GB junctions is generally
different from that in GBs, their difference depends on temperature and GB structure, and the
relative magnitude of the diffusivity in GB junctions and GBs is still in debate [42, 43]. As such,
the diffusion coefficients along GB junctions are treated as equal to diffusion coefficients along GBs
in the current model.

The GB diffusion model described above has been programmed into a tool called GBDiff.
GBDiff is available under open source licensing as part of the MAterials Simulation Package [44]
and can be obtained from https://pypi.python.org/pypi/MAST. The version of GBDiff used for
this paper is GBDiff version 1.0 in MAST version 1.2.0. When using the GBDiff code please cite
the present paper and any additional references given in the MAST citation file, which is generated
automatically when MAST is run. GBDiff can also be used as on online application through the
Materials Hub (materialhub.org(http://materialhub.org)) [45]. Please follow the citation guidelines
given for this tool on the MaterialsHub.

3. Results for systems with two types of GBs

The kMC model introduced in Section 2 is first applied to calculate the effective diffusivity
Deff in a system containing two types of GBs: high-energy GBs (HEGBs) with diffusivity DH and
low energy GBs (LEGBs) with diffusivity DL. These GB types are randomly distributed in the
GB network. In order to determine the effect of system dimensionality on diffusion through GB
networks, we consider two different GB topologies based on 2D and 3D Voronoi diagrams.

The GB network in our systems is characterized by the diffusivity contrast
DH
DL

, the fraction

fH of HEGBs , the distribution of GB types and the average grain size. In addition to these
properties, the connectivity of HEGBs can also play an important role in determining Deff. The
influence of the HEGB connectivity on macroscopic material properties has been shown in Ref. [19–
23, 33]. The effect of the HEGB connectivity is particularly apparent in systems with two types
of GBs, as considered in our study, because HEGBs can form percolating paths for the diffusant
and profoundly affect Deff [33]. Therefore, before we calculate Deff in our systems, we first evaluate
the percolation threshold of the Voronoi GB networks. Following the method in Ref. [46], we
investigate the percolation paths between two parallel free surfaces and apply periodic boundary

5



conditions to all other surfaces. The final result of the percolation threshold is independent of which
free surface we choose and instead, it depends on the connectivity of HEGBs in the system. Note
that the boundary conditions used here for calculating the percolation threshold are different from
the periodic boundary conditions applied when calculating the effective diffusivity. According to
Ref. [46], a HEGB is called percolating if it is directly connected to the selected surface (the right
boundary in our study) or if one of its nearest HEGB neighbors is percolating. With this criterion,
we are able to identify the number of percolating HEGBs in the GB network, and then the fraction
of percolating HEGBs can be obtained. Ideally, in a system with an infinite number of GBs, the
fraction of percolating HEGBs will change from zero to unity when the fraction of HEGBs fH is
equal to the percolation threshold fp. In a system with finite number of GBs, when fH approaches
fp, the fraction of percolating HEGBs will change from zero to unity gradually but rapidly, and we
can approximate fp from the change in the fraction of percolation HEGBs.

Since the fraction of percolating HEGBs is strongly dependent on the specific GB distribution
for a finite system, in order to obtain statistically relevant results, we carry out a large number of
simulations (typically 104) for each value of fH. The average value of the fraction of percolating
HEGBs are reported. As shown in Fig. 1b, the percolation threshold fp is 0.67±0.01 and 0.18±0.01
for the 2D and 3D Voronoi GB networks, respectively. Here, fp is determined by the value of fH

where the fraction of percolating GBs is 0.5, and the uncertainty is approximated by the range of
fH where the fraction of percolation GBs varies from 1

3 to 2
3 . The percolation threshold in 2D is

consistent with the results of Monte Carlo simulations reported in Refs. [47, 48], where the authors
found fp = 0.66693 in the 2D Voronoi network. In addition, fp can be used to estimate the effective
coordination number Z according to the formula [46] Zfp = d

d−1 , where d is the dimensionality.
Using the values of fp and d, we find that Z is about 3.0 and 8.3 for 2D and 3D Voronoi diagrams,
respectively.

Before we evaluate the dependence of the effective diffusivity on the properties of the 3D GB
network, we check the dependence of the effective diffusivity on the mesh density. Fig. 1c shows
the effective diffusivity in a 3D GB network with 2× 103 grains as a function of mesh density with
different GB network properties. It can be seen that within the range of mesh density considered
here, the effective diffusivity is not very sensitive to the mesh density. In the following, we carry
out kMC diffusion simulations in a 3D Voronoi GB network with 4× 103 grains where the average
number of elements in one GB is approximately 9. In these simulations, DL is fixed at a constant
value (which is 1 in our study), and we vary DH to change the diffusivity contrast DH

DL
. As a

result, the observed trends in the dependence of diffusion on DH
DL

are equivalent to the trends in
the dependence on DH. Moreover, in the following figures, Deff is normalized by DH so that the
features of Deff observed in our study are not affected by the diffusivity unit. This normalization
does not impact the dependence of Deff on the properties of the GB network.

3.1. Dependence of Deff on the diffusivity contrast DH/DL

Figure 2 shows
Deff
DH

as a function of
DH
DL

for different values of fH. In this figure, the solid

lines and the dashed lines correspond to the cases when fH < fp and fH > fp, respectively, where

the percolation threshold fp = 0.16 (see Fig. 1c). We find that the dependence of Deff on
DH
DL

when fH < fp is different from that when fH > fp. In particular, when fH < fp, Deff is nearly

independent of DH so that
Deff
DH

is proportional to
(
DH
DL

)p
with the power coefficient p ≈ −1. This

result means that when the fraction of HEGBs is lower than the percolation threshold, the effective
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diffusivity is governed primarily by the diffusivity along LEGBs. On the other hand, for the case

of fH > fp and when
DH
DL

increases, the dependence of Deff on DH changes from a power law with

exponent p (−1 < p < 0) to a linear function (p ≈ 0). The transition from a power law to a linear
function depends on fH so that with higher fH, Deff becomes linearly dependent on DH at smaller

values of
DH
DL

. When the fraction of HEGBs exceeds the percolation threshold, Deff is dominated by

DH and this dominance becomes more apparent as
DH
DL

increases. This behavior is expected because

above the percolation threshold, the diffusion through the polycrystalline samples is accomplished

mainly by the diffusion along HEGBs. As
DH
DL

increases, the probability of diffusing via LEGBs

pathways is further decreased, and eventually Deff becomes a linear function of DH. To summarize

the trends in Fig. 2, fH determines how Deff depends on
DH
DL

. When fH < fp, Deff is governed by

DL and is nearly independent of
DH
DL

. When fH > fp, Deff is approximately a linear function of
DH
DL

.

3.2. Dependence of Deff on the fraction of HEGB fH

While fH determines the dependence of Deff on
DH
DL

as illustrated in Fig. 2, the ratio
DH
DL

affects

how Deff depends on fH. As shown in Ref. [33] for systems with a uniform grain size and uniform
GB length, the dependence of Deff on fH follows different rules in high- and low-diffusivity contrast

systems. Here we evaluate Deff as a function of fH for different values of
DH
DL

in the GB network with

non-uniform grain size and GB length distributions. The results of our simulations are shown in Fig.
3a. In the same figure, we also show predictions of the effective medium theory (EMT) [50], which
is a widely used analytical model for describing macroscopic transport properties in heterogeneous
media. As shown in Fig. 3a, predictions of EMT agree well with the results of kMC simulations

for small values of
DH
DL

. However, deviations between two approaches are observed as
DH
DL

increases.

This trend is consistent with the conclusions from Ref. [33] that EMT fails to predict Deff in high
contrast systems. The discrepancy between EMT and kMC is due to the fact that EMT averages
the diffusivities of all GBs, but it does not take into account the GB connectivity. As some HEGBs
may form high-diffusivity paths and the diffusion prefers to occur along these paths, the overall
diffusivity is higher than that estimated by the EMT.

Two other interesting features are found in Fig. 3a. First, the deviation of EMT from kMC
in this study is larger than the one reported in Ref. [33]. Specifically, the authors of Ref. [33]

found that EMT works reasonably well when
DH
DL

< 104, while we find that EMT provides a poor

approximation of the simulation data when
DH
DL

> 102. The difference in the range of applicability

of EMT arises from the difference in the GB connectivity in the two studies. More specifically, the
percolation threshold in the GB network considered in our study is lower than that in Ref. [33].
Consequently, in the present study, the formation of long-range connectivity of HEGBs is easier,

leading to a failure of the EMT approximation at smaller values of
DH
DL

. Secondly, we find that the

largest deviation between EMT and kMC occurs when fH ≈ fp. To illustrate this deviation, in Fig.
3b we plot the ratio of Deff obtained from kMC to that predicted by EMT. It is clear from this plot

that when |fH − fp| > 0.2, EMT works quite well even at large values of
DH
DL

. On the other hand,

when |fH − fp| < 0.2, EMT and kMC predictions differ, and the difference reaches the maximum at
fH = fp. We conclude that EMT provides a reasonable approximation for the effective diffusivity
not only for low contrast systems, but also for high contrast systems when the absolute difference
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between fH and fp is large. This extension of the applicability of EMT makes it possible to use
this theory to predict Deff in a wider range of GB structures than previously assumed.

As demonstrated in Figs. 3a and 3b, when
DH
DL

increases, the percolating network of HEGBs be-

gins to dominate diffusion and it is expected that
Deff
DH

in high contrast systems can be approximated

by the percolation theory. Based on the percolation theory described in detail in Ref. [50, 51], Deff

should exhibit a power-law dependence Deff ∝ (fH − fp)t when fH > fp and Deff ∝ (fp − fH)−s

when fH < fp, where t and s are critical exponents. Figures 3c and 3d illustrate the dependence
of Deff on |fp − fH| for the cases of fH > fp and fH < fp, respectively, where the solid lines repre-

sent the curve fitting using the above power-law functions. One can see that as
DH
DL

increases, the

relation between Deff and |fp − fH| approaches the power laws shown above. In particular, when
DH
DL

> 105, all the
Deff
DH

vs. |fp − fH| functions can be well described by above power-law functions

with exponents t = 1.30±0.05 and s = 1.22±0.05. This feature has also been observed in Ref. [33],
but the critical exponents in that study were different from the ones reported here, presumably due
to the difference in the type of GB network (e.g., 2D honeycomb lattice and 3D Voronoi diagram).
The values of t and s found in our study are consistent with most of previous studies [50–58] on
percolation systems, where the critical exponents are in the range of 1− 2.

While EMT and the percolation theory can predict Deff when
DH
DL

is low and high, respectively,

a generalized effective medium (GEM) equation [59–61] has been often used to predict Deff in the

entire range of
DH
DL

values. This equation has been previously applied in Ref. [33] to fit Deff in a

2D honeycomb GB lattice. The GEM equation has the following form

(1− fH)
D

1/s
L −D1/s

eff

D
1/s
L +

(
f−1

p − 1
)
D

1/s
eff

+ fH
D

1/t
H −D1/t

eff

D
1/t
H +

(
f−1

p − 1
)
D

1/t
eff

= 0, (1)

where fH, fp, DH, DL, s and t have the same meanings as before. As shown earlier, in the case
of our GB networks, fp = 0.18, t = 1.30, and s = 1.22. By substituting these parameters into
Eq. (1) we obtain the GEM prediction of Deff. The comparison of GEM and kMC calculation of
Deff is illustrated in Fig. 3a, which shows that two methods match quite well. This result indicates
that Deff in a system with two types of GBs can be approximated by the GEM equation with the
values for the percolation threshold and the critical exponents being appropriate for the given GB

network. A combined analysis of Figs. 2 and 3 demonstrates that the effects of fH and
DH
DL

on Deff

are coupled to each other and are strongly dependent on the corresponding GB network.

3.3. Statistical distribution of Deff

As discussed in Section 2, the effective diffusivities reported so far in Figs. 2−3 are the averages
over 5 × 104 samples. The standard error (as estimated by the standard deviation divided by the
mean) of the reported average Deff is around 1%. We note that the standard error decreases with
both the number of samples, as to be expected, and the size of the system, as increasing the latter
provides better averaging over a range of local environments (see Fig. 4a for an example). These
results indicate that in order to have a more accurate measurement of the effective diffusivity in an
experiment, we may either increase the system size or have more samples, which is as expected.

In addition to the standard error in the mean Deff, the fluctuation in Deff among 5×104 samples
is also of interested because it provides the spectrum of Deff that can be measured in a given sample
and it reveals the dependence of Deff on the details of the microstructure. Deff exhibits fluctuations
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due to the statistical nature of GB distributions. Here we characterize the fluctuation in Deff using
the coefficient of variation, cv = σ

µ , where µ = 〈Deff〉 is the average Deff and σ is the standard

deviation of Deff. Figs. 4b and 4c show the coefficient of variation of Deff for varying
DH
DL

and fH as

a function of the system size. One can see that cv (i.e., fluctuation in Deff) generally decreases as the

system size increases and the behavior of cv is not very sensitive to
DH
DL

and fH. Moreover, it is found

that for the system size studied in this work (i.e., 102 ∼ 104 grains in 3D domain), cv is larger than
0.8, which demonstrates that the fluctuation in Deff can be significant even if we have more than
103 grains in a system. The spread of the Deff indicates that although the macroscopic diffusion
can be characterized by the mean value of Deff, the details of the microstructure should be taken
into account when trying to predict Deff if diffusion will occur through a specific polycrystalline
sample.

3.4. Dependence of Deff on the model dimensionality

In order to examine the dependence of Deff on the dimensionality, we evaluate Deff on a 2D
Voronoi GB network with 104 grains. The simulation conditions in the 2D Voronoi GB network
are the same as that in the 3D Voronoi GB network. The corresponding figures for 2D Voronoi GB
networks are shown in the supplemental document of the present paper.

We first analyze the dependence of Deff on
DH
DL

for different values of fH, and we find that the

trends are similar to those found in 3D Voronoi GB network (shown in Fig. 2). Specifically, Deff

in 2D Voronoi GB network is nearly independent of
DH
DL

when fH is smaller than the percolation

threshold fp, which for 2D Voronoi diagram is equal to 0.67. When fH > fp, Deff becomes a linear

function of
DH
DL

. We also find that the dependence of Deff on fH follows the same trend as that shown

in Fig. 3. Specifically, the EMT is accurate for low-contrast systems and the power-law functions in
the percolation theory provide a good model for Deff in high-contrast systems. Significant deviation
of EMT predictions from kMC results are observed mainly when fH and fp are close in values. In
addition, we find that, similarly as in 3D Voronoi GB network, the GEM theory (Eq. (1) with
exponents t = 1.6 and s = 1.3) can be used to approximate Deff in 2D Voronoi GB network. The
agreement between the kMC and GEM methods again demonstrates that with the appropriate
percolation threshold and critical exponents, the GEM theory can predict Deff with a reasonable
accuracy. We also analyze the coefficient of variation of Deff. We find that, similarly as in a 3D GB
network, the coefficient of variation of Deff in a 2D Voronoi GB network decreases as the system

size increases, and it does not strongly depend on fH and
DH
DL

. Moreover, the fluctuation of Deff in

a 2D Voronoi GB network can also be significant for a system containing at lease up to 104 grains.

In summary, the dependence of Deff on
DH
DL

and fH as well as the fluctuation of Deff are nearly

independent of the dimensionality of the simulation domain. The observed trends are similar in 2D
and in 3D Voronoi GB networks. The main difference between 2D and 3D lies in the percolation
threshold and the critical exponents in the percolation theory.

3.5. Grain size effect of Deff

Grain size has been previously shown to affect diffusion through a polycrystalline sample, in
cases where both GB diffusion and bulk diffusion are active [30]. As the grain size decreases, the
fraction of GB region increases, which allows more diffusion to be conducted along GBs rather
than through the crystalline grains. Since the GB diffusion is faster than the bulk diffusion, Deff
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increases as the grain size decreases. Here, we are interested in the kinetic regime where bulk
diffusion through crystalline grains is negligible as compared to GB diffusion. It is interesting to
ask whether the previously observed grain size effect will be present in this regime as well. We
check three types of conditions: (1) the grain size is uniform and all GBs have the same character;
(2) the grain size is uniform and GBs have two different characters; (3) the grain size is non-uniform
and GBs have two different characters.

The grain size effect in the first case has been in fact already analyzed in Section 2, where the
GB lattice is a square mesh in a 2D domain. We found that as the grain size decreases, the number
of hopping steps across a certain distance increases. Meanwhile, the time spent in each hopping
step decreases because the grain size decreases and so does the hopping distance. As a consequence,
the total time over which one particle diffuses across a certain distance is independent of the grain
size, and in this scenario Deff does not depend on the grain size. Deff in this case can actually be
derived analytically following the steps shown in Ref. [62]. Specifically, the average square of the
displacement of the diffusant after n jumps can be expressed as

〈
d2
〉

= nl2, where l is the distance
in each jump. Since the total diffusion time τ is τ = n∆t (where ∆t is the time spent in each jump),

it can be derived that Deff =
〈d2〉
4τ = l2

4∆t , so the effective diffusivity is equal to the diffusivity in
each GB, and therefore it is independent of the grain size.

The next step (case (2)) is to consider two types of GBs (HEGBs and LEGBs) with different
diffusivities (DH and DL). Analytical derivation of Deff in a system with two types of GBs is
not straightforward since Deff depends on the GB connectivity as shown in Figure 3, so we focus
on numerical calculation of Deff here. We calculate the numerical values of Deff as a function of
grain size, where the GB lattice is a square mesh and two types of GBs with diffusivity contrast
DH
DL

= 103 are randomly distributed. The results show that Deff still does not exhibit any grain

size dependence within our error bars. We further evaluate Deff in a 2D Voronoi diagram with
a non-uniform grain size and two types of GBs (case (3)), which again shows that Deff does not
depend on the grain size.

Above results suggest that when GB diffusion is the only active mechanism of transport, Deff is
independent of the grain size under quite general conditions. This finding is based on the assumption
that the properties of the GB network (e.g., GB diffusivity, fraction of each type of GB) do not
depend on the grain size. Therefore, if the grain size effect of Deff is observed in experiments on
systems in the Type C regime, it will likely be induced by the relation between the grain size and
the aforementioned properties of GBs. For instance, the authors of Ref. [63] have shown that the
diffusion of hydrogen in pure nickel depends on grain size because the fraction of each type of GB
and the density of trapping sites for hydrogen (and therefore GB diffusivity of hydrogen) change
as grain size varies in the experiment.

4. Results for systems with multiple types of GBs

We extend our kMC simulations to investigate Deff in model systems that contain multiple
types of GBs. These systems resemble closely the GB networks in actual polycrystalline materials.
A comprehensive investigation of the dependence of Deff on the properties of GB networks, such as
the diffusivity ratio and the fraction of each type of GB, is beyond the scope of this work. Here,
we mainly demonstrate that our model is applicable to a system with multiple GB types and show
the effects of including more types of GBs on the Deff.
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Table 1: Diffusivities of the ten types of GBs in five different cases considered in this study. cvd is the coefficient of
variation of the diffusivity for each case (see text for details).

Case No. D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 cvd
1 5 9980 9985 9990 9995 10005 10010 10015 10020 19995 0.471

2 5 10 9985 9990 9995 10005 10010 10015 19990 19995 0.667

3 5 10 15 9990 9995 10005 10010 19985 19990 19995 0.810

4 5 10 15 20 9995 10005 19980 19985 19990 19995 0.940

5 5 10 15 20 25 19975 19980 19985 19990 19995 1.053

As an example, we investigate a system that contains ten types of GBs, where the fraction
of each type is 10%. We consider 5 different cases for the GB diffusivities, as shown in Table 1.
To enable a meaningful comparison, in all cases, the maximum and minimum diffusivities are the
same, and so is the average diffusivity defined as D̄ =

∑10
i=1 fiDi, where fi and Di are the fraction

and the diffusivity of the i-th GB, respectively. Moreover, GB diffusivities in each case can be
categorized into three groups: low-diffusivity (Di < 50), intermediate diffusivity (Di ≈ 104), and
high-diffusivity (Di ≈ 2×104). In order to make a comparison between the current simulations and
the earlier simulations on systems containing two types of GBs (see Section 3), case 5 in Table 1
includes only low- and high-diffusivity GBs and therefore it is equivalent to a system with two
types of GBs. The diffusivities in these 5 cases are chosen to have different diffusivity spread while
keep the minimum, the maximum, and the average diffusivities the same. Here we again use the
coefficient of variation cvd = σ

µ to represent the diffusivity spread, where µ = D̄ is the mean GB
diffusivity and σ is the standard deviation of the GB diffusivity. Here the mean and standard
deviations are taken over the 10 values for each case, and is not based on a KMC simulation. The
coefficient of variation of the diffusivity, cvd, therefore differs greatly in meaning from the coefficient
of variation of the effective diffusivity cv introduced in Section 3. Since µ is the same in all cases,
cvd is proportional to σ. It can be seen from Table 1 that cvd is different in the five cases, and
it has the largest value in case 5. One should note that the diffusivities in Table 1 can also be
divided into two groups: one group with diffusivity on the order of 10 and the other on the order
of 104. For this reason, all 5 cases in Table 1 resemble systems with two GB types and they allow
us to examine the qualitative behavior of Deff when multiple GB types instead of two GB types
are considered.

Figure 5a shows the effective diffusivity Deff calculated for each case as a function of cvd, which
is the measure of the spread in diffusivity values among the ten GB types. We find that Deff

decreases with increasing cvd. In addition, the system with only two types of GBs (case (5))
has generally a lower effective diffusivity than a system with more GB types, provided that the
maximum, the minimum, and the average diffusivities are the same. The diffusivity spread in a
system with multiple GB types reaches its minimum (cvd = 0) when the GB diffusivity is uniform
(i.e., Di = D̄). In this case, Deff has its maximum value, which is D̄. From Fig. 5a we can also
see that in a system with multiple GBs, low-diffusivity GBs have more impact on Deff than high-
diffusivity GBs. Specifically, when the fraction of low-diffusivity GBs fL is the same as the fraction
of high-diffusivity GBs fH (i.e., fL = fH), Deff decreases as fL (= fH) increases. The dominant
role of low-diffusivity GBs in Deff is similar to systems with two types of GBs when the fraction of
HEGBs is smaller than the percolation threshold (see Fig. 2).

For the sake of further comparison between the behavior of Deff in systems with two and more
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than two types of GBs, we also examine the EMT prediction of Deff, the grain size effect, and
fluctuation of Deff. Figure 5b gives the relative difference in Deff obtained from kMC and EMT
(i.e.,

(
DkMC

eff −DEMT
eff

)
/DEMT

eff ) as a function of the coefficient of variation cvd. It shows that the
deviation of EMT prediction from kMC results increases as cvd (i.e., the spread in diffusivity)
increases. Since the physical meaning of the spread in diffusivity is the same in a system with
multiple GB types and in a system with only two GB types, it is not surprising that in a system
with multiple GB types, EMT works better for samples with smaller cvd. The dependence of Deff

on the average grain size in the five cases studied here is shown in Fig. 5c. It can be seen that,
consistently with what we found in a system with two types of GBs, Deff in systems with multiple
GB types does not depend on the grain size as long as only GB diffusion is activated. Including
more types of GBs not only does not induce a grain size dependence of Deff, but also does not have
a strong effect on the fluctuation of Deff, as shown in Fig. 5d. We find that although the coefficient
of variation of Deff in systems with multiple GB types increases slightly as the diffusivity spread
increases (from case 1 to case 5), the values of cv is similar in systems with two and multiple GB
types. Consistently with the trend found in systems with two GB types (see Figures 4b and 4c),
the fluctuation of Deff decreases as the system size increases in a system with multiple GB types,
and more importantly, the fluctuation can be significant even if a system has more than 103 grains.
The latter again demonstrates that the details of microstructure should be taken into account when
the macroscopic diffusivity is measured in a specific polycrystalline sample.

In summary, extending the model systems to include more than two GB types does not have
an impact on the existence or lack of grain size effects on diffusion and on fluctuation of diffusion
coefficients among randomly generated microstructures with the same macroscopic parameters.
When the minimum, the maximum and the average diffusivities of individual GBs are kept constant,
including more than two GB types leads to a faster diffusion. For materials with multiple types
of GBs, low-diffusivity GBs have more impact on Deff in the sense that when the fractions of low-
diffusivity GBs and high-diffusivity GBs are kept the same (e.g., cases 1-5 in Table 1), Deff decreases
as these fractions increase (e.g., from case 1 to case 5 in Table 1). We also find that the EMT model
captures the diffusion behavior better in systems with a smaller spread in diffusivity values among
the different GB types. Finally, one should note that the cases studied here are special because all
ten GB types are equally probable in the sample, which may not reflect the complexity in actual
GB structure. Nevertheless, the properties of Deff shown above do not depend on the number of
GB types or their fraction, and therefore they are expected to provide a general behavior of Deff

in realistic GB systems with multiple GB characters.

5. Conclusions

We have developed a kinetic Monte Carlo model to evaluate the effective diffusivity in GB
networks in polycrystalline materials. This model connects the atomic-level information of hopping
processes with the coarse-grained diffusion on GB planes, which allows us to conduct macroscopic
simulations without resolving atomic details. Several features of the effective diffusivity have been
found from the numerical experiments. First, in the kinetic limit when GB diffusion is the dominant
transport mechanism, the effective diffusivity through a polycrystalline sample does not depend
on the grain size. Secondly, the dimensionality and the type of GB networks mainly affect the
percolation threshold and the critical exponents in the percolation theory, and they do not change
the qualitative dependence of the effective diffusivity on the diffusivity contrast and the fraction
of GB types. We also find that the effective diffusivity exhibits fluctuations due to the statistical
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nature of GB distribution. In addition, our results show that EMT approximates the effective
diffusivity with a reasonable accuracy not only in low-diffusivity contrast systems, but also in
high-diffusivity contrast systems when the fraction of HEGBs is significantly different from the
percolation threshold. In all cases, GEM can be used to predict the effective diffusivity if the
percolation threshold and the critical exponents are known. Finally, including more types of GBs
generally increases the effective diffusivity, provided that the maximum, the minimum and the
average diffusivities, are kept the same.

Although the properties of the effective diffusivity shown above are based on simplified GB
systems, these properties do not depend on specific materials or GB characters, and they shed
light on the qualitative behavior of the effective diffusivity in systems containing two or more GB
types. The presented modeling framework is flexible so that it will be straightforward to include
additional effects such as the correlation of GB types. This model can be easily applied to specific
materials systems with complex GB networks, realistic diffusivities, and with a variable fraction of
each GB type.

Acknowledgement
This research is being performed using funding received from the DOE Office of Nuclear Energy’s
Nuclear Energy University Programs contract number 00089350.

[1] I. Kaur, Y. Mishin, W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion,
Wiley, Chichester, UK, 1995.

[2] Y. Mishin, C. Herzig, Grain boundary diffusion: Recent progress and future research, Mat.
Sci. Eng. A 260 (1999) 55.

[3] J. Fisher, Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffu-
sion, J. Appl. Phys. 22 (1951) 74.

[4] L. Harrison, Influence of dislocations on diffusion kinetics in solids with particular reference
to the alkali halides, Trans. Faraday Soc. 57 (1961) 1191.

[5] R. Whipple, Concentration contours in grain boundary diffusion, Philos. Mag. 45 (1954) 1225.

[6] A. Le Claire, The analysis of grain boundary diffusion measurements, Brit. J. Appl. Phys. 14
(1963) 351.

[7] T. Suzuoka, Lattice and grain boundary diffusion in polycrystals, Trans. Jpn. Inst. Metals 2
(1961) 25.

[8] G. Gilmer, H. Farrel, Grain boundary diffusion in thin films: I. The isolated grain boundary,
J. Appl. Phys. 47 (1976) 3792.

[9] G. Gilmer, H. Farrel, Grain boundary diffusion in thin films: II. Multiple grain boundaries
and surface diffusion, J. Appl. Phys. 47 (1976) 4373.

[10] W. Preis, W. Sitte, Grain boundary diffusion through thin films. Application to permeable
surfaces, J. Appl. Phys. 79 (1996) 2986.

[11] W. Preis, W. Sitte, Fast grain boundary diffusion and rate-limiting surface exchange reactions
in polycrystalline materials, J. Appl. Phys. 97 (2005) 093504.

13



[12] D. Turnbull, R. Hoffman, The effect of relative crystal and boundary orientations on grain
boundary diffusion rates, Acta Metall. 2 (1954) 419.

[13] R. Hoffman, Anisotropy of grain boundary self-diffusion, Acta Metall. 4 (1956) 97.

[14] B. Straumal, B. Bokshtein, L. Klinger, L. Shvindlerman, Indium diffusion along interphase
twist boundaries SnGe, Scripta Metall. 15 (1981) 1197.

[15] J. Sommer, C. Herzig, S. Mayer, W. Gust, Grain boundary self-diffusion in silver bicrystals,
Defect Diff. Forum 66-69 (1989) 843.

[16] E. Budke, C. Herzig, S. Prokofjev, L. Shvindlerman, Orientation dependence of Au and Cu
Diffusion Along Symmetric [001] Tilt Grain Boundaries in Cu, Mater. Sci. Forum 207-209
(1996) 465.

[17] Q. Ma, R. Balluffi, Diffusion along [001] tilt boundaries in the Au/Ag system I. Experimental
result, Acta Metall. Mater. 41 (1993) 133.

[18] A. Suzuki, Y. Mishin, Atomic mechanisms of grain boundary diffusion: Low versus high tem-
peratures, J. Mat. Sci. 40 (2005) 3155.

[19] L. Lim, T. Watanabe, Fracture toughness and brittle-ductile transition controlled by grain
boundary character distribution (GBCD) in polycrystals, Acta Metall. Mater. 38 (1990) 2507.

[20] V. Gertsman, K. Tangri, R. Valiev, On the grain boundary statistics in metals and alloys
susceptible to annealing twinning, Acta Metall. Mater. 42 (1994) 1785.

[21] L. Fionova, Grain boundary ensembles in materials with f.c.c., b.c.c. and diamond structures,
Mater. Chem. Phys. 37 (1994) 201.

[22] T. Watanabe, The impact of grain boundary character distribution on fracture in polycrystals,
Mat. Sci. Eng. A 176 (1994) 39.

[23] V. Gertsman, M. Janecek, K. Tangri, Grain boundary ensembles in polycrystals, Acta Mater.
44 (1996) 2869.

[24] W. Hart, On the role of dislocations in bulk diffusion, Acta Metallogr. 5 (1957) 597.

[25] A. Mortlock, The effect of segregation on the solute diffusion enhancement due to the presence
of dislocations, Acta Metallogr. 8 (1960) 132.

[26] J. Kalnins, E. Kotomin, J. Maier, Calculations of the effective diffusion coefficient for inhomo-
geneous media, J. Phys. Chem. Solids 63 (2002) 449.

[27] I. Belova, G. Murch, Diffusion in nanocrystalline materials, J. Phys. Chem. Solids 64 (2003)
873.

[28] I. Belova, G. Murch, The effective diffusivity in polycrystalline material in the presence of
interphase boundaries, Philog. Mag. 84 (2004) 17.

[29] I. Belova, G. Murch, Calculation of the effective conductivity and diffusivity in composite solid
electrolytes, J. Phys. Chem. Solids 66 (2005) 722.

14



[30] Y. Chen, C. Schuh, Geometric considerations for diffusion in polycrystalline solids, J. Appl.
Phys. 101 (2007) 063524.

[31] D. Shrader, S. Khalil, T. Gerczak, T. Allen, A. Heim, I. Szlufarska, D. Morgan, Ag diffusion
in cubic silicon carbide, J. Nuc. Mat. 408 (2011) 257.

[32] S. Khalil, N. Swaminathan, D. Shrader, A. Heim, D. Morgan, I. Szlufarska, Diffusion of Ag
along Σ3 grain boundaries in 3C-SiC, Phys. Rev. B 84 (2011) 214104.

[33] Y. Chen, C. Schuh, Diffusion on grain boundary networks: Percolation theory and effective
medium approximations, Acta Mater. 54 (2006) 4709.

[34] A. Suzuki, Y. Mishin, Atomistic Modeling of Point Defects and Diffusion in Copper Grain
Boundaries, Interface Sci. 11 (2003) 131.

[35] J. Harding, D. Harris, Simulation of grain-boundary diffusion in ceramics by kinetic Monte
Carlo, Phys. Rev. B 63 (2001) 094102.

[36] A. Pedersen, H. Jonsson, Simulations of hydrogen diffusion at grain boundaries in aluminum,
Acta Mater. 57 (2009) 4036.

[37] Y. Du, J. Rogal, R. Drautz, Diffusion of hydrogen within idealized grains of bcc Fe: A kinetic
Monte Carlo study, Phys. Rev. B 86 (2012) 174110.

[38] R. Quey, P. Dawson and F. Barbe, Large-scale 3D random polycrystals for the finite element
method: Generation, meshing and remeshing, Comp. Met. Appl. Mech. Eng. 200 (2011) 1729-
1745.

[39] M. Frary, C. Schuh, Nonrandom percolation behavior of grain boundary networks in high-Tc
superconductors, App. Phys. Lett. 83 (2003) 3755.

[40] M. Frary, C. Schuh, Percolation and statistical properties of low- and high-angle interface
networks in polycrystalline ensembles, Phys. Rev. B 69 (2004) 134115.

[41] M. Frary, C. Schuh, Connectivity and percolation behaviour of grain boundary networks in
three dimensions, Philo. Mag. 85 (2005) 1123.

[42] B. Bokstein, V. Ivanov, O. Oreshina, A. Peteline, S. Peteline, Direct experimental observation
of accelerated Zn diffusion along triple junctions in Al, Mater. Sci. Eng. A 302 (2001) 151.

[43] T. Frolov, Y. Mishin, Molecular dynamics modeling of self-diffusion along a triple junction,
Phys. Rev. B 79 (2009) 174110.

[44] T. Angsten, T. Mayeshiba, H. Wu, and D. Morgan, Elemental vacancy diffusion database from
high-throughput first-principles calculations for fcc and hcp structures, New J. Phys. 16 (2014)
015018.

[45] https://materialshub.org/resources/diffcalc

[46] P. Millett, M. Tonks, S. Biner, Grain boundary percolation modeling of fission gas release in
oxide fuels, J. Nuc. Mat. 424 (2012) 176.

15



[47] A. Becker, R. Ziff, Percolation thresholds on two-dimensional Voronoi networks and Delaunay
triangulations, Phys. Rev. E 80 (2009) 041101.

[48] V. Vyssotsky, S. Gordon, H. Frisch, J. Hammersley, Critical Percolation Probabilities (Bond
Problem), Phys. Rev. 123 (1961) 1566.

[49] A. Hunt, Percolation Theory for Flow in Porous Media, Springer, Berlin, 2005.

[50] S. Kirkpatrick, Percolation and Conduction, Rev. Mod. Phys. 45 (1973) 574.

[51] D. Stauffer, A. Aharony, Introduction to Percolation Theory, CRC Press, Philadelphia, USA,
1994.

[52] M. Isichenko, Percolation, statistical topography, and transport in random media, Rev. Mod.
Phys. 64 (1992) 961.

[53] J. Clerc, G. Giraud, J. Laugier, J. Luck, The electrical conductivity of binary disordered
systems, percolation clusters, fractals and related models, Adv. Phys. 39 (1990) 191.

[54] P. Li, W. Strieder, Critical exponents for conduction in a honeycomb random site lattice, J.
Phys. C 15 (1982) L1235.

[55] M. Sahimi, On the relationship between the critical exponents of percolation conductivity and
static exponents of percolation, J. Phys. A 17 (1984) L601.

[56] J. Straley, Critical exponents for the conductivity of random resistor lattices, Phys. Rev. B 15
(1977) 5733.

[57] I. Webman, J. Jortner, M. Cohen, Critical exponents for percolation conductivity in resistor
networks, Phys. Rev. B 16 (1977) 2593.

[58] M. Sahimi, B. Hughes, L. Scriven, H. Davis, J. Phys. C 16 (1983) L521.

[59] D. McLachlan, An equation for the conductivity of binary mixtures with anisotropic grain
structures, J. Phys. C 20 (1987) 865.

[60] D. McLanchlan, M. Blaskiewicz, R. Newnham, Electrical Resistivity of Composites, J. Am.
Ceram. Soc. 73 (1990) 2187.

[61] J. Wu, D. McLachlan, Percolation exponents and thresholds obtained from the nearly ideal
continuum percolation system graphite-boron nitride, Phys. Rev. B 56 (1997) 1236.

[62] H. Berg, Random Walks in Biology, Princeton University Press, Princeton, NJ, 1993.

[63] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain size
and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater.
60 (2012) 6814.

16



Figure Caption:

Figure 1 (Color online) (a) A typical 3D Voronoi GB network with 2000 grains, where the triangular
mesh is generated in each GB. (b) Average fraction of percolating HEGBs as a function of the
fraction fH of HEGBs in 2D and 3D Voronoi GB networks. (c) The effective diffusivity as a

function of mesh density with different diffusivity ratios
DH
DL

when fraction fH of HEGBs is 0.5

and the diffusivity DL in LEGB is 1.0. In (b) and (c), the error bar is within the thickness of the
symbols used in the points.

Figure 2 (Color online) Dependence of the effective diffusivity Deff on
DH
DL

for different fractions fH

of HEGBs. The solid lines and dashed lines correspond to the cases when fH is smaller and larger
than the percolation threshold fp, respectively.

Figure 3 (Color online) (a) Dependence of Deff on fH for different ratios
DH
DL

. Symbols, dash lines

and solid lines correspond to the results from kMC simulations, predictions of the EMT theory,
and predictions of the GEM theory with fp = 0.18, t = 1.30, and s = 1.22. (b) The ratio of Deff

values calculated from kMC and from EMT for different values of
DH
DL

. Deff as a function of (c)

fH − fp when fH > fp and (d) fp − fH when fH < fp calculated for different values of
DH
DL

. In (c)

and (d), the solid lines are the curve fitting using the power-law functions described in text.

Figure 4 (Color online) (a) 〈Deff〉 with error bar (estimated by the standard deviation divided by
the mean) as a function of the system size when DH

DL
= 1000 and fH = 0.5. Coefficient of variation

of Deff as a function of the system size for (b) different values of
DH
DL

when fH = 0.5 and (c) different

values of fH when DH
DL

= 100.

Figure 5 (Color online) Analysis of a system with more than two types of GB. (a) Effective diffusivity
Deff calculated in the 5 cases (see Table 1); (b) A relative difference between kMC and EMT
predictions as a function of the coefficient of variation of GB diffusivity; (c) Dependence of Deff

on the normalized grain size (ratio of the average grain size to the domain size); (d) Coefficient of
variation of Deff as a function of the system size.
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Figure 1: (Color online) (a) A typical 3D Voronoi GB network with 2000 grains, where the triangular mesh is
generated in each GB. (b) Average fraction of percolating HEGBs as a function of the fraction fH of HEGBs in 2D
and 3D Voronoi GB networks. (c) The effective diffusivity as a function of mesh density with different diffusivity

ratios
DH
DL

when fraction fH of HEGBs is 0.5 and the diffusivity DL in LEGB is 1.0. In (b) and (c), the error bar is

within the thickness of the symbols used in the points.
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Figure 2: (Color online) Dependence of the effective diffusivity Deff on
DH
DL

for different fractions fH of HEGBs in a

3D Voronoi system. The solid lines and dashed lines correspond to the cases when fH is smaller and larger than the
percolation threshold fp, respectively.
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Figure 3: (Color online) (a) Dependence of Deff on fH for different ratios
DH
DL

. Symbols, dash lines and solid lines

correspond to the results from kMC simulations, predictions of the EMT theory, and predictions of the GEM theory
with fp = 0.18, t = 1.30, and s = 1.22. (b) The ratio of Deff values calculated from kMC and from EMT for different

values of
DH
DL

. Deff as a function of (c) fH− fp when fH > fp and (d) fp− fH when fH < fp calculated for different

values of
DH
DL

. In (c) and (d), the solid lines are the curve fitting using the power-law functions described in text.
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Figure 4: (Color online) (a) 〈Deff〉 with error bar (estimated by the standard deviation divided by the mean) as a
function of the system size when DH

DL
= 1000 and fH = 0.5. Coefficient of variation of Deff as a function of the system

size for (b) different values of
DH
DL

when fH = 0.5 and (c) different values of fH when DH
DL

= 100.
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Figure 5: (Color online) Analysis of a system with more than two types of GB. (a) Effective diffusivity Deff calculated
in the 5 cases (see Table 1); (b) A relative difference between kMC and EMT predictions as a function of the coefficient
of variation of GB diffusivity; (c) Dependence of Deff on the normalized grain size (ratio of the average grain size to
the domain size); (d) Coefficient of variation of Deff as a function of the system size.
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